Jiaang Yao Curriculum Vitae

Email: jiaang.yao@ucsf.edu & jiaang_yao@berkeley.edu Phone: (415) 815-8654 || Website: https://jiaangyao.github.io/

Education

2021 - 2026	University of California, Berkeley/University of California, San Francisco
San Francisco, CA	Ph.D., Bioengineering
	Advisors: Philip A. Starr; Simon Little
2018 – 2021	Columbia University
New York, NY	M.S., Electrical Engineering
	Thesis: Towards A Closed-Loop System for Epidural Electrical Stimulation
	Advisors: Jason B. Carmel; Paul Sajda
	Integrated EE BS/MS Program
	B.S., Electrical Engineering
	summa cum laude, Tau Beta Pi, Joint BA/BS 3-2 Program
2015 – 2020	Wesleyan University
Middletown, CT	B.A., Biology, Mathematics, Neuroscience and Behavior
	Phi Beta Kappa, Joint BA/BS 3-2 Program

Research Interests

Parkinson's disease; deep brain stimulation (DBS); neuroengineering; movement disorder; machine learning theory; reinforcement learning; variational inference; optimization

Research Experience

2022 - Current	Graduate Student Researcher, University of California, San Francisco Advisors: Philip A. Starr: Simon Little
	 Developed the first long-term at-home adaptive deep brain stimulation (DBS) algorithm with higher symptom control than clinical stimulation
	 Redesigning biomarker selection pipeline for aDBS using nonlinear and deep learning models
	 Implementing automated parameter finetuning pipeline for aDBS using Bayesian optimization
2020 – 2021	 Research Assistant, Columbia University Irving Medical Center Advisors: Jason B. Carmel Designed a decoder for predicting forelimb movement in rats using electro- corticography (ECoG) data. Implemented MATLAB scripts for controlling behavioral task experiments and closed-loop stimulation sessions.

- Performed animal training and administered data recording sessions.
- Configured data collection pipeline and designed experiment protocols.
- 2018 2021 **Research Assistant**, Columbia University Advisors: Paul Sajda
 - Developed a state-space model algorithm for predicting the instantaneous phase of local field potential rhythms in real time.
 - Devised multimodal neural network models that utilize features from volumes of optical coherence tomography angiography images for diagnosing neovascular age-related macular degeneration.
 - Designed the first recurrent neural network model for ballistocardiogram (BCG) artifact suppression in simultaneous EEG-fMRI recordings that significantly outperformed the current state of the art.
 - Implemented an open-source Python toolbox called BCGNet for users to train neural network models for suppressing BCG artifact.

2016 – 2018 **Research Assistant**, Wesleyan University

Advisors: Michael P. Weir

- Modeled interactions between 530-loop region of ribosome and mRNA during protein translation using support vector machines.
- Performed molecular dynamics analysis of ribosome during protein translation using AMBER.

Fellowships

2021 – 2023	Berkeley Fellowship for Graduate Study Role: Graduate Fellow; Award amount: \$34000 Supported in part by the TUYF Charitable Trust Fund for Graduate Fellowships in Medical Science, Oceanography and Environmental Science
Summer 2019	Summer@SEAS at Columbia University Role: Summer Fellow; Award amount: \$5000
Summer 2016	QAC Summer Apprentice at Wesleyan University Role: Summer Fellow; Award amount: \$4000

Honors and Awards

2022	Erwin Howard Armstrong Memorial Award (MS) , Columbia University Awarded annually by the Faculty of Electrical Engineering to one outstanding candidate for the M.S. degree
2020	Erwin Howard Armstrong Memorial Award (BS) , Columbia University Awarded annually by the Faculty of Electrical Engineering to one outstanding candidate for the B.S. degree
2018 – 2020	Dean's List , All Available Semesters, Columbia University Awarded in all semesters when mandatory Pass/Fail grading was not in place due to COVID19

2019	Phi Beta Kappa Honor Society , Fall Induction, Wesleyan University <i>Limited to 15 graduating seniors from the class of 2020</i>
2019	Tau Beta Pi Honor Society , Spring Induction, Columbia University <i>Top 12% of the class of 2020 at Columbia Engineering</i>
2015 - 2018	Dean's List, All Semesters, Wesleyan University
2017	Plukas Teaching Apprentice Award , Wesleyan University <i>Awarded to outstanding course assistants in the Economics department</i>

Publications

* authors contributed equally **Peer-Reviewed Journal Articles**

- **J2.** K. A. Thakoor, **J. Yao**, D. Bordbar, O. Moussa, W. Lin, P. Sajda, and R. W. Chen, "A multimodal deep learning system to distinguish late stages of amd and to compare expert vs. ai ocular biomarkers," *Scientific Reports*, vol. 12, no. 1, pp. 1–11, 2022. DOI: 10.1038/s41598-022-06273-w
- J1. J. R. McIntosh*, J. Yao*, L. Hong, J. Faller, and P. Sajda, "Ballistocardiogram artifact reduction in simultaneous EEG-fMRI using deep learning," *IEEE Transactions on Biomedical Engineering*, vol. 68, no. 1, pp. 78–89, 2021. DOI: 10.1109/TBME.2020.3004548

Peer-Reviewed Conference Proceedings

C1. K. Thakoor, D. Bordbar, J. Yao, O. Moussa, R. Chen, and P. Sajda, "Hybrid 3D-2D deep learning for detection of neovascular age-related macular degeneration using optical coherence tomography b-scans and angiography volumes," 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1600–1604, 2021. DOI: 10.1109/ISBI48211.2021.9434111

Peer-Reviewed Conference Abstracts

A1. K. Thakoor, D. Bordbar, J. Yao, O. Moussa, W. Lin, I. Scherbakova, V. Diaconita, P. Sajda, and R. Chen, "A hybrid deep learning system to distinguish late stages of amd and to compare expert vs. machine amd risk features," *Investigative Ophthalmology & Visual Science*, vol. 62, no. 8, pp. 2146–2146, 2021

Presentations

* authors contributed equally Conference Presentations

- CP2. C. R. Oehrn, S. Cernera, L. H. Hammer, M. Shcherbakova, J. Yao, A. G. Hahn, S. Little, and P. A. Starr, "Data-driven identification of a neural biomarker informs clinically effective adaptive deep brain stimulation in parkinson's disease," in *The 9th Annual BRAIN Initiative Meeting*, Bethesda, MD, Jun. 2023
- CP1. S. Cernera, L. H. Hammer, C. R. Oehrn, J. Yao, M. Shcherbakova, A. G. Hahn, S. S. Wang, C. A. Racine, J. A. Ostrem, C. N. Smyth, S. Little, and P. A. Starr, "At-home, embedded closed-loop deep brain stimulation using data-driven neural physiomarkers alleviates residual motor symptoms in parkinson's disease," in *The 10th International BCI Meeting: Balancing Innovation and Translation*, Brussels, Belgium, Jun. 2023

Poster Presentations

- PP5. L. H. Hammer, C. Oehrn, S. R. Cernera, J. Yao, M. Shcherbakova, A. G. Hahn, S. S. Wang, C. A. Racine, J. A. Ostrem, C. N. Smyth, S. Little, and P. A. Starr, "Long term stability of subthalamic nucleus physiomarkers during optimization of an adaptive deep brain stimulation system," in *The 9th Annual BRAIN Initiative Meeting*, Bethesda, MD, Jun. 2023
- PP4. L. H. Hammer, S. Cernera, C. R. Oehrn, J. Yao, M. Shcherbakova, A. G. Hahn, S. S. Wang, C. A. Racine, J. A. Ostrem, C. N. Smyth, S. Little, and P. A. Starr, "Patient-tailored closedloop deep brain stimulation improves residual parkinson's disease symptoms during at-home evaluation," in *The 11th International IEEE/EMBS Conference on Neural Engineering (NER)*, Baltimore, MD, Apr. 2023
- PP3. K. Thakoor, D. Bordbar, J. Yao, O. Moussa, W. Lin, I. Scherbakova, V. Diaconita, R. Chen, and P. Sajda, "A hybrid deep learning system to distinguish late stages of AMD and to compare expert vs. machine AMD risk features," in 2021 Annual Meeting of Association for Research in Vision and Ophthalmology (ARVO), May 2021
- PP2. J. Yao*, Y. Lin*, J. R. McIntosh, L. Hong, J. Faller, and P. Sajda, "BCGNet: A deep learning toolbox for ballistocardiogram artifact suppression in EEG-fMRI recordings," in 2020 IEEE Brain Workshop on Advanced Neurotechnologies, Oct. 2020
- PP1. J. Yao, J. W. Glickman, D. Krizanc, and M. P. Weir, "Refining a model for rRNA base pairing to mRNA during protein translation," in 17th Annual Biophysics Retreat of Wesleyan University, Middletown, CT, Sep. 2016

Teaching Experience

Spring 2021	Course Assistant , Columbia University ECBM E4040: Neural Networks and Deep Learning
Fall 2020	Course Assistant , Columbia University ECBM E4040: Neural Networks and Deep Learning
Spring 2020	Lab Assistant, Columbia University ELEN E3082: Digital Electronics Laboratory
Fall 2018	Teaching Assistant , Wesleyan University BIOL 181: Principles of Biology I: Cell Biology and Molecular Basis of Heredity
Fall 2016	Course Assistant , Wesleyan University ECON 110: Introduction to Economic Theory

Professional Service

Journal Reviewer (ad hoc)

Neural Plasticity, NeuroImage:Clinical, npj Parkinson's Disease

Professional Membership

International Parkinson and Movement Disorder Society (MDS) Institute of Electrical and Electronics Engineers (IEEE) American Society of Biochemistry and Molecular Biology (ASBMB)

Technical Skills

Programming: Python, MATLAB, CUDA, Java, Unity, C **Language:** Mandarin (Native), Japanese (Intermediate), Italian (Elementary)